3.85 \(\int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) \left (e+f x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=209 \[ \frac{b c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} (b e-a f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac{\sqrt{f} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

-((Sqrt[f]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f
)])/(Sqrt[e]*(b*e - a*f)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]))
 + (b*c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqr
t[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f
*x^2))/(e*(c + d*x^2))])

_______________________________________________________________________________________

Rubi [A]  time = 0.36228, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094 \[ \frac{b c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} (b e-a f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac{\sqrt{f} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[c + d*x^2]/((a + b*x^2)*(e + f*x^2)^(3/2)),x]

[Out]

-((Sqrt[f]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f
)])/(Sqrt[e]*(b*e - a*f)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]))
 + (b*c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqr
t[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f
*x^2))/(e*(c + d*x^2))])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 47.4031, size = 170, normalized size = 0.81 \[ \frac{\sqrt{f} \sqrt{c + d x^{2}} E\left (\operatorname{atan}{\left (\frac{\sqrt{f} x}{\sqrt{e}} \right )}\middle | 1 - \frac{d e}{c f}\right )}{\sqrt{e} \sqrt{\frac{e \left (c + d x^{2}\right )}{c \left (e + f x^{2}\right )}} \sqrt{e + f x^{2}} \left (a f - b e\right )} - \frac{b c^{\frac{3}{2}} \sqrt{e + f x^{2}} \Pi \left (1 - \frac{b c}{a d}; \operatorname{atan}{\left (\frac{\sqrt{d} x}{\sqrt{c}} \right )}\middle | - \frac{c f}{d e} + 1\right )}{a \sqrt{d} e \sqrt{\frac{c \left (e + f x^{2}\right )}{e \left (c + d x^{2}\right )}} \sqrt{c + d x^{2}} \left (a f - b e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d*x**2+c)**(1/2)/(b*x**2+a)/(f*x**2+e)**(3/2),x)

[Out]

sqrt(f)*sqrt(c + d*x**2)*elliptic_e(atan(sqrt(f)*x/sqrt(e)), 1 - d*e/(c*f))/(sqr
t(e)*sqrt(e*(c + d*x**2)/(c*(e + f*x**2)))*sqrt(e + f*x**2)*(a*f - b*e)) - b*c**
(3/2)*sqrt(e + f*x**2)*elliptic_pi(1 - b*c/(a*d), atan(sqrt(d)*x/sqrt(c)), -c*f/
(d*e) + 1)/(a*sqrt(d)*e*sqrt(c*(e + f*x**2)/(e*(c + d*x**2)))*sqrt(c + d*x**2)*(
a*f - b*e))

_______________________________________________________________________________________

Mathematica [C]  time = 0.621166, size = 207, normalized size = 0.99 \[ \frac{-i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (b c-a d) \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-i a d e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-a f x \sqrt{\frac{d}{c}} \left (c+d x^2\right )}{a e \sqrt{\frac{d}{c}} \sqrt{c+d x^2} \sqrt{e+f x^2} (b e-a f)} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[c + d*x^2]/((a + b*x^2)*(e + f*x^2)^(3/2)),x]

[Out]

(-(a*Sqrt[d/c]*f*x*(c + d*x^2)) - I*a*d*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e
]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - I*(b*c - a*d)*e*Sqrt[1 + (d*x
^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)
/(d*e)])/(a*Sqrt[d/c]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

_______________________________________________________________________________________

Maple [A]  time = 0.038, size = 285, normalized size = 1.4 \[{\frac{1}{ae \left ( af-be \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({x}^{3}adf\sqrt{-{\frac{d}{c}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{1\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{1\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bce\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+xacf\sqrt{-{\frac{d}{c}}} \right ) \sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(3/2),x)

[Out]

(x^3*a*d*f*(-d/c)^(1/2)-EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d*e*((d*x^2+
c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(
-d/c)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticPi(x*(-d/c)^(
1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^
(1/2)+x*a*c*f*(-d/c)^(1/2))*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/e/a/(-d/c)^(1/2)/(a*
f-b*e)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)), x)

_______________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)),x, algorithm="fricas")

[Out]

Timed out

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{c + d x^{2}}}{\left (a + b x^{2}\right ) \left (e + f x^{2}\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x**2+c)**(1/2)/(b*x**2+a)/(f*x**2+e)**(3/2),x)

[Out]

Integral(sqrt(c + d*x**2)/((a + b*x**2)*(e + f*x**2)**(3/2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)), x)